A General Diagnostic Model Applied to Language Testing Data

Matthias von Davier

A General Diagnostic Model Applied to Language Testing Data

Matthias von Davier
ETS, Princeton, NJ

September 2005

As part of its educational and social mission and in fulfilling the organization's nonprofit charter and bylaws, ETS has and continues to learn from and also to lead research that furthers educational and measurement research to advance quality and equity in education and assessment for all users of the organization's products and services.

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to publication. To obtain a PDF or a print copy of a report, please visit:
http://www.ets.org/research/contact.html

Copyright © 2005 by Educational Testing Service. All rights reserved.
EDUCATIONAL TESTING SERVICE, ETS, the ETS logo, and
TOEFL are registered trademarks of Educational Testing Service.
The Test of English as a Foreign Language is a trademark of Educational Testing Service.

Abstract

Probabilistic models with more than one latent variable are designed to report profiles of skills or cognitive attributes. Testing programs want to offer additional information beyond what a single test score can provide using these skill profiles. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods like the Markov chain Monte Carlo (MCMC), since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a class of general diagnostic models (GDMs) that can be estimated with customary ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The model and the algorithm for estimating model parameters handles directly missing responses without the need of collapsing categories or recoding the data. Within the class of GDMs, compensatory as well as noncompensatory models may be specified. This report uses one member of this class of diagnostic models, a compensatory diagnostic model that is parameterized similar to the generalized partial credit model (GPCM). Many well-known models, such as uni- and multivariate versions of the Rasch model and the two parameter logistic item response theory (2PL-IRT) model, the GPCM, and the FACETS model, as well as a variety of skill profile models, are special cases of this member of the class of GDMs. This paper describes an algorithm that capitalizes on using tools from item response theory for scale linking, item fit, and parameter estimation. In addition to an introduction to the class of GDMs and to the partial credit instance of this class for dichotomous and polytomous skill profiles, this paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL ${ }^{\circledR}$ Internet-based testing (iBT).

Key words: Cognitive diagnosis, item response theory, latent class models, EM-algorithm

1. Introduction and Overview

The goal of this paper is to introduce a class of general diagnostic models suggested by von Davier and Yamamoto (2004c) and to provide evidence that an instance of this class of general diagnostic models (GDMs), the GDM for partial credit data, is capable of accurate parameter recovery for models with multivariate skill variables. The second goal of this report is to present results using this GDM for partial credit data (subsequently referred to as pGDM) for analyzing TOEFL ${ }^{\circledR}$ Internet-based testing (iBT) Reading and Listening data from two test forms, subsequently referred to as Form A and Form B. The third goal is to discuss how results from the pGDM compare to standard item response theory (IRT) models and to provide information to aid in improving on the specification of the Q-matrix used in cognitive diagnosis models.

Cognitive diagnosis models for skill profile reporting have received a lot of attention in recent years. Early work by Tatsuoka (1983) was based on IRT and a classification of aberrant response patterns. Other roots of cognitive diagnosis can be found in work that extends latent class analysis (LCA; Lazarsfeld \& Henry, 1968) to approaches that allow more than one latent variable. The aim of these diagnostic models is to identify skill profiles, that is, to perform multiple classifications of examinees based on their observed response patterns with respect to features (skills/attributes) that are assumed to drive the probability of correct responses. The approach taken here defines a general class of models for cognitive diagnosis (GDM) based on extensions of latent class models, the Rasch model, item response theory models, as well as skill profile models.

Skill profile models may be used by testing programs that want to offer additional information beyond what a single test score provides. Many recent approaches are using computationally intensive estimation methods like Markov chain Monte Carlo (MCMC), since standard maximum likelihood (ML) estimation techniques were either unavailable or were deemed infeasible. von Davier and Yamamoto (2004a, 2004b) suggested a class of GDMs and outline parameter estimation for these models using standard ML techniques. The class of GDMs extend the applicability of skill profile models to polytomous items and to skills with more than two proficiency levels. Within the GDMs, compensatory as well as noncompensatory models may be specified. An instance of this class, the pGDM contains many well-known models, such uni- and multivariate versions of the Rasch model (Rasch, 1960), the two parameter logistic item response theory (2PL-IRT) model (Birnbaum, 1968), the generalized partial credit model (GPCM; Muraki, 1992), and the FACETS model (Linacre, 1989), as well as a variety of skill profile approaches like multiple classification

LCA and a compensatory fusion model as special cases. An EM-algorithm for estimating the pGDM was recently implemented in the mdltm software developed by the author of this report. This implementation enables one to use standard tools from IRT for scale linking, for deriving measures of model fit, item and person fit, and for parameter estimation.

The following section presents an introduction to the class of GDMs for dichotomous and polytomous skill profiles. Following this, the GDM is specialized to an instance of this class, the pGDM. Subseqent sections present applications of the pGDM to simulated data and to real data from the TOEFL iBT program. The examples using simulated data show the pGDM's capability of recovering parameters from simulated multivariate item response data with an associated Q-matrix. The application to the TOEFL iBT data is based on a comparison of diagnostic skill profile models for two subscales, Reading and Listening, making use of two test forms, Form A and Form B, with univariate and multivariate IRT approaches.

2. A Class of General Diagnostic Models

Previous approaches to cognitive diagnosis modeling can be summarized as being based on one or more of a number of techniques, including the rule space methodology (Tatsuoka, 1983), latent class analysis (Haberman, 1979; Haertel, 1989; Maris, 1999), MCMC estimation of the (reparameterized) unified model (i.e., the fusion model implemented in the Arpeggio software; DiBello, Stout, \& Roussos, 1995; Hartz, Roussos, \& Stout, 2002), and discrete skill models estimated with Bayesian inference networks (BINs; e.g., Almond \& Mislevy, 1999). The general class of GDMs as presented below was developed with the goal of maintaining similarities to these previous approaches using ideas from IRT, log-linear models, and latent class analysis. One central idea behind diagnostic models is that different items tap into different sets of skills or examinee attributes and that experts can generate a matrix of relations between items and skills required to solve these items. The matrix is commonly referred to as the Q-matrix, and it is an explicit building block in many of the diagnostic modeling approaches mentioned above.

The general class of GDMs is instantiated in section 2.2 below to define the pGDM, which contains many well-known IRT models as special cases. At the same time, the pGDM extends these models to multivariate, polytomous skill profile models (compare von Davier \& Yamamoto, 2004c). Like many of the other "contenders" listed above, the class of GDMs makes use of a Q-matrix as an integral part of the model, but in its general form allows noninteger entries as well
as polytomous item responses and polytomous attributes/skills. The skill by item relations defined by a Q-matrix is also a central building block of the class of GDMs. However, the class of GDMs allows generalized versions of the Q-matrix, and more important, provides a more general approach of specifying how skill patterns and the Q-matrix interact than previous approaches. The GDM will be introduced in its general form in the next section, and following that, a specialized form of the GDM will be introduced in section 2.2 that already contains many well-known psychometric models.

2. 1 Loglinear Class of Diagnostic Models

This section introduces one particular way to formalize the class of GDMs for polytomous data and dichotomous or polytomous skill levels. The class of diagnostic models is defined by a discrete, multidimensional, latent variable θ, that is, $\theta=\left(a_{1}, \ldots a_{K}\right)$, with discrete user-defined skill levels $a_{k} \in\left\{s_{k 1}, \ldots, s_{k l}, \ldots, s_{k L_{k}}\right\}$. In the most simple (and most common) case the skills are dichotomous, that is, the skills will take on only two values, $a_{k} \in\{0,1\}$. In this case, the skill levels are interpreted as mastery (1) versus nonmastery (0) of skill k. Let $\theta=\left(a_{1}, . ., a_{K}\right)$ be a K-dimensional skill profile consisting of polytomous skill levels $a_{k}, \quad k=1, . ., K$. Then define the item specific logit as

$$
\begin{equation*}
\log \left[\frac{P\left(X=x \mid \beta_{i}, q_{i}, \gamma_{i}, a\right)}{P\left(X=0 \mid \beta_{i}, q_{i}, \gamma_{i}, a\right)}\right]=\beta_{x i}+\gamma_{x i}^{T} . h\left(q_{i}, a\right) \tag{1}
\end{equation*}
$$

with Q-matrix entries $q_{i}=\left(q_{i 1}, . ., q_{i K}\right)$ and $q_{i k}=\in\{0,1,2, \ldots\}$ for $k=1, . ., K$. In addition there are real valued difficulty parameters $\beta_{i x}$ and a k-dimensional slope parameter $\gamma_{x i}=\left(\gamma_{x i 1}, . ., \gamma_{x i K}\right)$ for each nonzero response category $x \in\left\{1,2, . ., m_{i}\right\}$. The model decomposes the conditional probability of a response x on item i into two summands, the overall difficulty $\beta_{x i}$, and a linear combination of skill level by Q-matrix terms $h\left(q_{i}, a\right)=\left(h_{1}\left(q_{i}, a\right), \ldots, h_{k}\left(q_{i}, a\right)\right)$. Given a nonzero Q-matrix entry, the slopes $\gamma_{i x}$. in the linear expression above determine how much the particular skill components in $a=\left(a_{1}, . ., a_{K}\right)$ contribute to the response probabilities for item i.

The Q-matrix entries $q_{i k}$ relate item i to skill k and determine whether (and to what extent) skill k is required for item i. If skill k is required for item i, then $q_{i k}>0$; if skill k is not required, then $q_{i k}=0$. Often, it implies that if skill k is defined as not required for item i in the Q-matrix by $q_{i k}=0$, then skill level a_{k} does not contribute at all to the response probabilities for this item.

The $h\left(q_{i}, a\right) \mapsto \mathbb{R}$ are a central building block of the GDM. Giving these functions a specific form defines instances of the class of GDMs with specific properties, see section 2.2. The h mapping projects the skill-levels $a_{k} a=\left(a_{1}, . ., a_{K}\right)$ using the Q-matrix entries $q_{i .}$. In most cases, the same projection will be adopted for all items. The h are mappings that specify how Q-matrix entries determine the skill patterns impact on the condional response probabilities $P\left(X=x \mid \beta_{i}, q_{i}, \gamma_{i}, a\right)$. The next subsection presents examples of such projections.

2.11 Instances of Skill by Q-Matrix Projections

One particular choice of a mapping $h_{i}()$ relates the GDM to discrete, multivariate IRT models. The choice of h for IRT type models is

$$
\begin{equation*}
h\left(q_{i}, a\right)=\left(q_{i 1} a_{1}, \ldots, q_{i K} a_{K}\right) \tag{2}
\end{equation*}
$$

so that the k-th component of h is $h_{k}\left(q_{i}, a\right)=q_{i k} a_{k}$. For $q \in\{0,1\}$, is equivalent to

$$
h_{k}\left(q_{i}, a\right)=\left\{\begin{array}{c}
a_{k} \text { for } q_{i k}=1 \\
0 \text { for } q_{i k}=0
\end{array} .\right.
$$

In this case, only the skills k with nonzero Q-matrix entries $q_{i k}$ (the skills required for this item) contribute to the response probabilities $P\left(x \mid \beta_{i}, q_{i}, \gamma_{i}, a\right)$ of item i. If $q_{i k}=1$, there is a total contribution of $\gamma_{i k} h\left(q_{i k}, a_{k}\right)=\gamma_{i k} a_{k}$ for skill k in Equation 1.

The above choice is appropriate for Q-matrices with $0 / 1$ entries combined with various skill level choices. Skill levels like $a_{k} \in\{-m, \ldots, 0, \ldots,+m\}$ or mastery/nonmastery dichotomies like $a_{k} \in\{0,1\}$ may be used with this definition of h, as long as the Q-matrix contains only $0 / 1$ entries.

However, this choice of $h(\cdot)$ does not work well with Q-matrices that have entries other than $0 / 1$. This is particularily true if the γ parameters as given in Equation 1 are to be estimated. In cases with integer or real valued Q-matrices, a useful choice is

$$
\begin{equation*}
h_{k}\left(q_{i k}, a_{k}\right)=\min \left(q_{i k}, a_{k}\right) \tag{3}
\end{equation*}
$$

for all k, with $q \in\{0,1,2, \ldots, m\}$ as well as $a \in\{0,1,2, \ldots, m\}$. This coincides with the definition in 2 if $q \in\{0,1\}$ and $a \in\{0,1\}$ but differs in cases using arbitrary skill levels a or Q-matrix entries q.

The rationale of this particular choice of the minimum of q and a is that the GDM may be used for skills assessment where the Q-matrix entries represents a sufficient level for skill k on item i. A higher skill level than $q_{i k}$ will not increase the probability of solving item i, whereas a skill level lower than $q_{i k}$ results in a lower probability of solving item $i .{ }^{1}$

2.12 Examples of Skill Level Definitions for Various Models

Assume that the number of skill levels is $S_{k}=2$ and choose skill levels $a_{k} \in\{-1.0,+1.0\}$, or alternatively, $a_{k} \in\{-0.5,+0.5\}$. Note that these skill levels are a-priorily defined constants and not model parameters.

This setting can be easily generalized to polytomous, ordinal skills levels with the number of levels being $S_{k}=m+1$ and a determination of levels like $a_{k} \in\{(0-c),(1-c), \ldots,(m-c)\}$ for some constant c, an obvious choice is $c=m / 2$.

Consider a case with just one dimension, say $K=1$, and many levels, say $S_{k}=41$, with levels of a_{k} being equally spaced (a common, but not a necessary choice), say $a_{k} \in\{-4.0, \ldots,+4.0\}$. Here, the GDM mimics a unidimensional IRT model, namely the GPCM (Muraki, 1992).

2.13 The Class of Diagnostic Model in Logistic Form

The loglinear formulation of the class of GDMs as given in Equation 1 may be transformed to a logistic form that is more familiar to researchers working with IRT models. The model as introduced above is equivalent to

$$
\begin{equation*}
P\left(X=x \mid \beta_{i}, q_{i}, \gamma_{i}, a\right)=\frac{\exp \left[\beta_{x i}+\gamma_{x i}^{T} \cdot h\left(q_{i}, a\right)\right]}{1+\sum_{y=1}^{m_{i}} \exp \left[\beta_{y i}+\gamma_{y i}^{T} \cdot h\left(q_{i}, a\right)\right]} \tag{4}
\end{equation*}
$$

with k-dimensional skill profile $a=\left(a_{1}, . ., a_{K}\right)$ and with some necessary restrictions on the $\sum_{k} \gamma_{x i k}$ and $\sum \beta_{x i}$ to identify the model. Using this reformulation and further specifiying the mapping $h()$ shows that a particular instance of the GDMs already contains common IRT models and a compensatory fusion model as special cases. The parameters $\beta_{x i}$ as well as $\gamma_{x i k}$ may be interpreted as threshold and slope parameters, respectively.

2.2 A General Diagnostic Model for Partial Credit Data

One particular member of the class of GDMs is chosen for the subsequent analyses. The choice of $h_{k}\left(q_{i}, a\right)=q_{i k} a_{k}$ together with Q-matrices containing only $0 / 1$ entries leads to a model that retains many features of well-known IRT models while extending these models to diagnostic applications with multivariate latent skills. In addition, the slope parameters are subject to the constraint $\gamma_{i x k}=x \gamma_{i k}$, so that the resulting instance is a GDM for dichotomous and polytomous pGDM. Skill profile models such as multiple classification latent class models (Maris, 1999), located latent class models (Formann, 1985), and a compensatory version of the fusion model (Hartz et al., 2002) are special cases of the pGDM. This model is suitable for dichotomous and ordinal responses $x \in\left\{0,1,2, . ., m_{i}\right\}$. Given the above definitions,

$$
\begin{equation*}
P\left(X=x \mid \beta_{i}, a, q_{i}, \gamma_{i}\right)=\frac{\exp \left[\beta_{x i}+\sum_{k=1}^{K} x \gamma_{i k} q_{i k} a_{k}\right]}{1+\sum_{y=1}^{m_{i}} \exp \left[\beta_{y i}+\sum_{k=1}^{K} y \gamma_{i k} q_{i k} a_{k}\right]} \tag{5}
\end{equation*}
$$

with k attributes (discrete latent traits) $a=\left(a_{1}, . ., a_{K}\right)$, and a dichotomous design Q-matrix $\left(q_{i k}\right)_{i=1 . . I, k=1 . . K}$. The a_{k} are discrete scores determined before estimation and can be chosen by the user. These scores are used to assign real numbers to the skill levels, for example $a(0)=-1.0$ and $a(1)=+1.0$ may be chosen for dichotomous skills (see section 2.12). de la Torre and Douglas (2004) estimated the dichotomous version of this model, the linear logistic model (LLM; Maris, 1999; Hagenaars, 1993), using MCMC methods. For ordinal skills with s_{k} levels, the a_{k} may be defined using $a(x)=x$ for $x=0, \ldots,\left(s_{k}-1\right)$ or $a(0)=-s_{k} / 2, \ldots, a\left(s_{k}-1\right)=s_{k} / 2$ (see section 2.12). The parameters of the models as given in Equation 5 can be estimated for dichotomous and polytomous data, as well as for ordinal skills, using the EM-algorithm.

The process of instantiation from the general class of GDMs to the pGDM and its specialization to commonly used IRT models is illustrated in Table 1.

The examples of instantiation from the general class of GDMs down to a discrete version of the common 2PL or GPCM, or a skill model with k-dimensional skill-patterns with dichotomous components as used in the analyses below in Table 1, show how different choices of a Q-matrix and a skill by item mapping $h()$ lead to certain models. von Davier and Yamamoto (2004c) presented other examples of instantiations that show that located latent class models and a compensatory fusion model version can be specified within the pGDM.

Table 1
Instantiation From a General Class of Models to a $p G D M$

Model/Class	Mapping $h(q, a)$	Q-matrix
The class of GDMs	$h\left(\left(q_{i 1}, . . q_{i K}\right),\left(a_{1}, . . a_{K}\right)\right)$	real valued $I \times K$
Compensatory GDMs	$h\left(q_{i k}, a_{k}\right)$ see section 2.11	real valued $I \times K$
pGDM	$h\left(q_{i k}, a_{k}\right)=q_{i k} a_{k}$	zeroes/ones $I \times K$
Example: 2PL or GPCM	$h\left(q_{i}, a\right)=1 a=\theta(a)$ see section 2.12	vector of ones $I \times 1$
Example: k-skill model	$h\left(q_{i}, a\right)=q_{i k} a$ with $a \in\{-1,1\}$	zeroes/ones $I \times K$

2.3 Estimation and Data Requirements

An implementation of marginal maximum likelihood (MML) parameter estimation using the EM-algorithm for the pGDM, as given in Equation 5, was developed by the author of this report. This algorithm is based on a previous program for estimating the parameters of discrete mixture distribution IRT models (von Davier, 2001; von Davier \& Yamamoto, 2004c). This extended program, called mdltm, provides information about convergence of parameter estimates, numbers of required iteration cycles and descriptive measures of model-data fit and item fit. The mdltm program is controlled by a scripting language that describes the data input format, the Q-matrix, and other features of the cognitive skill model (i.e., the number of skill levels and skill level scores a_{k} for each skill and whether the γ parameters are constrained across items or estimated freely).

The mdltm software has been tested with samples of up to 200,000 examinees, when implementing a confirmatory two-dimensional 2PL IRT model. Other trials included up to 50,000 examinees when implementing an eight-dimensional dichotomous skill model $\left[\theta=\left(a_{1}, \ldots, a_{8}\right)\right.$ with $\left.a_{k} \in\{-1,1\}\right]$. Larger numbers of skills very likely pose problems with identifiability, no matter whether MCMC (in Bayes nets or other approaches), or MML methods are used to estimate parameters, unless the number of items per skill variable is sufficiently large. For diagnostic models with that many skills, the mdltm software allows the specification of a number of constraints that may help to achieve identifiability. At this point in time, the following diagnostic skill profile models can be estimated with the mdltm software:

- Multiple classification latent class models
- A compensatory fusion/Arpeggio (sometimes referred to as the reparameterized unified) model
- Extensions of these models to polytomous response data, and polytomous skill levels
- Rasch model, partial credit model, 2PL IRT (Birnbaum) model, GPCM,
- Latent class analyses, confirmatory multivariate IRT, mixture IRT models

The data requirements for the software are as follows: The software can read ASCII data files in arbitrary format; the scripting language used to control the software enables the user to specify which columns represent which variables. The software also handles weighted data, multiple group data (multiple populations), data missing by design (matrix samples) in response variables, and data missing at random in response variables, and missing data in grouping variables. The output is divided into a model parameter summary and an estimation summary, and a file that contains the scores and attribute classifications for each examinee. This file also contains the percent correct for each subscale as defined by the Q-matrix and the examinee ID code.

3. Parameter Recovery for Skill Profile Data

The following sections show how the pGDM recovers parameters for item response data with known skill by item relations (i.e., for a known Q-matrix). The example reported here is based on estimates from 40 simulated datasets with 36 items with a dichotomous response format and 2880 simulated examinees each. The model used to generate the data was based on four dichotomous skills. As input, the generating $[36 \times 4]$ Q-matrix was provided, that is, the item-skill relations were given as fixed and known. The parameters were estimated using the mdltm software.

The Q-matrix was generated randomly with a probability of $p=0.5$ of a 1.0 entry in all cells of the Q-matrix. The difficulty parameters were drawn from a normal $N(0,1)$ distribution and the slope parameters were drawn from a normal $N(1,0.25)$ distribution. The Q-matrix was the same across simulated datasets, as were the true skill patterns and the generating slope and difficulty parameters. The generating ("true") difficulty and slope parameters are given on the left-hand side of Table 2. The generating probability distribution of the 16 different skill patterns is given in Table 4 in the truth column. The data were generated using the model equation in Equation 5. The following subsections present results based on a comparison of the estimated parameters and skill pattern distributions with the generating ("true") values of these parameters.

3.1 Parameter Recovery Results

The simulated datasets were generated using R (http://cran.r-project.org), the free S-Plus clone, and were analyzed using the mdltm software.

A script was written in R that allows the user to simulate item response data that follow a model according to Equation 5 with four dichotomous skill variables. Table 2 shows the generating slope parameters in places where the Q-matrix has a nonzero entry and contains "-/-" otherwise. The generating difficulty parameters are given in the column denoted by β_{i} on the left-hand side. The estimated parameters were subject to two constraints that match the data generating process. The mean of the difficulties was assumed to be 0.0 and the mean of the slopes was assumed to be 1.0.

If other constraints were used, the estimated parameters would have been subject to a transformation that has to be taken into account when estimating the accuracy of parameter recovery. Table 2 shows the root mean square errors (RSME) of the parameter estimates, that is,

$$
\begin{equation*}
\operatorname{RMSE}(\hat{\alpha})=\sqrt{\frac{1}{40} \sum_{i=1}^{40}\left(\hat{\alpha}_{i}-\alpha_{\text {true }}\right)^{2}} \tag{6}
\end{equation*}
$$

where $\alpha_{\text {true }}$ is the generating value of the parameter, and $\hat{\alpha}_{i}$ is the estimate from the i-th dataset.
Note that empty cell entries corresponding to a value of 0.0 in the Q-matrix are marked with "-/-." The largest value for the RMSE is found for Item $34, R M S E\left(\beta_{34}\right)=0.154$. This item, at the same time, has the most extreme item difficulty parameter of the set, $\beta_{34}=-3.611$, so that a larger standard error of estimation as well as a slightly larger bias may be expected. The average bias is defined as $B(\hat{\alpha})=\alpha_{M}-\alpha_{\text {true }}$ with $\alpha_{M}=\frac{1}{40} \sum_{i} \hat{\alpha}_{i}$ and the empirical standard error (s.e.) is defined as

$$
\text { s.e. }(\hat{\alpha})=\sqrt{\frac{1}{40} \sum_{i=1}^{40}\left(\hat{\alpha}_{i}-\alpha_{M}\right)^{2}} \text {. }
$$

Table 3 shows average bias and standardized residuals $B(\hat{\alpha}) /$ s.e. $(\hat{\alpha})$ for parameter estimates. All residuals are of moderate size, and the RMSE values are homogeneous across items, for both the four slopes and the difficulty parameters. None of the standardized residuals are larger than the critical value $-3.5013<z<3.5013$ based on a Bonferroni corrected $\alpha=0.00046=0.05 / 108$, assuming a normal distribution. Parameter estimates were not adjusted to match the overall mean (or \log mean) of the generating parameter values, nor were the generating values used as starting values. The starting values for estimation were 0.0 for difficulties and 1.0 for slopes. The starting distribution for the skill pattern probabilities were uniform. Taking the relative size of the bias into account, Tables $2-3$ show that parameters are recovered accurately.

Table 2
Generating Parameters and RMSE of the Parameter Estimates

Generating parameters						RMSE					
Item i	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}	Item	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}
1	-/-	0.68692	-/-	0.73681	-1.07045	1	-/-	0.05953	-/-	0.06103	0.04161
2	-/-	0.33594	0.96009	-/-	-0.13508	2	-/-	0.06162	0.05761	-/-	0.03648
3	-/-	1.03094	0.77417	-/-	-0.28843	3	-/-	0.06090	0.05167	-/-	0.04048
4	0.87669	-/-	-/-	0.63231	-0.87271	4	0.05666	-/-	-/-	0.04889	0.04451
5	-/-	0.51326	1.24808	-/-	0.71665	5	-/-	0.05924	0.05770	-/-	0.06034
6	0.93370	-/-	-/-	1.06978	-0.22106	6	0.05847	-/-	-/-	0.06110	0.05577
7	-/-	-/-	-/-	-/-	0.91743	7	-/-	-/-	-/-	-/-	0.03563
8	1.24307	-/-	-/-	1.01998	1.66109	8	0.07454	-/-	-/-	0.08037	0.07791
9	1.37841	0.63066	0.89836	-/-	0.19979	9	0.07233	0.08324	0.06151	-/-	0.05685
10	-/-	1.12834	0.92587	1.13789	0.31114	10	-/-	0.07841	0.07709	0.06954	0.07409
11	-/-	-/-	-/-	-/-	1.12535	11	-/-	-/-	-/-	-/-	0.04219
12	-/-	0.96446	0.99007	-/-	0.58775	12	-/-	0.07359	0.05722	-/-	0.04856
13	-/-	0.74277	1.27635	0.77795	1.23988	13	-/-	0.07454	0.07526	0.08377	0.07887
14	-/-	-/-	-/-	0.96845	0.13247	14	-/-	-/-	-/-	0.04250	0.04442
15	-/-	-/-	0.96954	-/-	1.53576	15	-/-	-/-	0.07224	-/-	0.06791
16	1.48847	-/-	1.05186	0.76383	-0.11062	16	0.06806	-/-	0.07061	0.08617	0.05600
17	-/-	0.92499	0.67772	-/-	0.78303	17	-/-	0.05805	0.05022	-/-	0.04782
18	-/-	-/-	-/-	0.86182	0.10393	18	-/-	-/-	-/-	0.04472	0.04003
19	-/-	1.12678	0.60013	0.50905	0.57051	19	-/-	0.08038	0.05240	0.07592	0.06156
20	1.24929	-/-	1.02421	0.76603	0.57814	20	0.05599	-/-	0.07078	0.06801	0.05959
21	-/-	-/-	0.95400	0.80630	0.62558	21	-/-	-/-	0.06336	0.05392	0.05903
22	0.93378	-/-	-/-	1.10012	-0.73748	22	0.06005	-/-	-/-	0.05538	0.05365
23	-/-	0.91165	0.65792	1.36767	-0.77870	23	-/-	0.08028	0.08197	0.07804	0.08108
24	1.43815	-/-	1.04525	1.00269	1.61808	24	0.07542	-/-	0.09782	0.08237	0.10283
25	1.00611	-/-	-/-	0.98702	-0.65120	25	0.05312	-/-	-/-	0.05968	0.05477
26	0.84290	-/-	1.42168	-/-	1.10440	26	0.05632	-/-	0.08783	-/-	0.06681
27	1.06509	-/-	-/-	0.90191	0.06198	27	0.07064	-/-	-/-	0.07153	0.04237
28	-/-	0.91012	1.21093	-/-	0.20378	28	-/-	0.06652	0.06344	-/-	0.04931
29	1.04187	-/-	0.67220	-/-	0.32692	29	0.05840	-/-	0.05529	-/-	0.04268
30	1.03021	-/-	1.16820	0.99947	-0.76693	30	0.05670	-/-	0.06473	0.07367	0.05921
31	-/-	-/-	0.89491	-/-	-1.23301	31	-/-	-/-	0.05011	-/-	0.04170
32	-/-	1.08660	1.01277	-/-	-1.01561	32	-/-	0.07616	0.05341	-/-	0.06065
33	1.18379	0.72921	-/-	-/-	-0.93440	33	0.05262	0.06443	-/-	-/-	0.05061
34	-/-	-/-	1.13221	-/-	-3.61158	34	-/-	-/-	0.14869	-/-	0.15422
35	-	1.18415	0.91200	0.78920	-1.47219	35	-/-	0.08626	0.07967	0.07739	0.06818
36	0.64152	0.91027	0.94237	-/-	-0.50421	36	0.06647	0.07148	0.07556	-/-	0.06094

Table 3
Mean Bias and Standardized Residuals

Mean bias						Standardized residuals					
Item i	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}	Item	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}
1	-/-	0.01106	-/-	-0.01609	0.00202	1	-/-	1.18112	-/-	-1.70698	0.30365
2	-/-	-0.01928	0.00202	-/-	0.00005	2	-/-	-2.05723	0.21924	-/-	0.01017
3	-/-	-0.00634	0.00817	-/-	-0.00509	3	-/-	-0.65402	1.00047	-/-	-0.79205
4	-0.00847	-/-	-/-	0.00552	0.00772	4	-0.94510	-/-	-/-	0.71030	1.10038
5	-/-	-0.00478	-0.00971	-/-	-0.00327	5	-/-	-0.50624	-1.06681	-/-	-0.33943
6	0.00848	-/-	-/-	0.00537	-0.01358	6	0.91533	-/-	-/-	0.55140	-1.56854
7	-/-	-/-	-/-	-/-	0.00023	7	-/-	-/-	-/-	-/-	0.04035
8	-0.00168	-/-	-/-	0.00605	-0.01912	8	-0.14123	-/-	-/-	0.47195	-1.58099
9	0.00774	-0.02729	0.00916	-/-	-0.00001	9	0.67272	-2.16732	0.94075	-/-	-0.00181
10	-/-	0.00559	0.01228	-0.00505	0.00104	10	-/-	0.44670	1.00779	-0.45524	0.08781
11	-/-	-/-	-/-	-/-	-0.00903	11	-/-	-/-	-/-	-/-	-1.36943
12	-/-	-0.01264	-0.00283	-/-	0.00073	12	-/-	-1.08960	-0.30954	-/-	0.09435
13	-/-	0.00088	0.00708	-0.02102	-0.00988	13	-/-	0.07435	0.59022	-1.61924	-0.78896
14	-/-	-/-	-/-	-0.01797	0.00323	14	-/-	-/-	-/-	-2.91531	0.45583
15	-/-	-/-	0.01676	-/-	0.02122	15	-/-	-/-	1.49003	-/-	2.05459
16	0.01273	-/-	-0.00387	0.01784	-0.00575	16	1.18924	-/-	-0.34281	1.32215	-0.64516
17	-/-	0.00932	-0.00279	-/-	0.00155	17	-/-	1.01648	-0.34867	-/-	0.20250
18	-/-	-/-	-/-	-0.01378	0.00504	18	-/-	-/-	-/-	-2.02309	0.79312
19	-/-	0.02263	0.00178	-0.01799	0.01288	19	-/-	1.83250	0.21317	-1.52385	1.33636
20	0.00696	-/-	-0.00299	0.00762	0.00380	20	0.78265	-/-	-0.26475	0.70453	0.39943
21	-/-	-/-	0.00863	0.00582	0.00782	21	-/-	-/-	0.85939	0.67857	0.83543
22	-0.00949	-/-	-/-	0.00270	-0.00528	22	-1.00002	-/-	-/-	0.30515	-0.61823
23	-/-	0.01821	-0.00315	0.02290	-0.03112	23	-/-	1.45478	-0.24062	1.91698	-2.59630
24	0.03064	-/-	0.02650	-0.00321	0.02115	24	2.77714	-/-	1.75745	-0.24386	1.31280
25	-0.00293	-/-	-/-	0.00163	0.01144	25	-0.34544	-/-	-/-	0.17065	1.33390
26	-0.00499	-/-	-0.01419	-/-	-0.00083	26	-0.55611	-/-	-1.02239	-/-	-0.07818
27	0.00345	-/-	-/-	0.00947	-0.00253	27	0.30612	-/-	-/-	0.83474	-0.37484
28	-/-	0.02220	-0.00534	-/-	0.00610	28	-/-	2.21105	-0.52841	-/-	0.77893
29	-0.00222	-/-	0.00228	-/-	-0.00209	29	-0.23769	-/-	0.25866	-/-	-0.30732
30	-0.00098	-/-	-0.00269	-0.02879	-0.00302	30	-0.10820	-/-	-0.25981	-2.65212	-0.31992
31	-/-	-/-	0.00145	-/-	0.01740	31	-/-	-/-	0.18183	-/-	2.86754
32	-/-	0.00881	-0.00119	-/-	0.00548	32	-/-	0.72766	-0.14010	-/-	0.56684
33	0.00448	-0.01767	-/-	-/-	-0.00037	33	0.53457	-1.78150	-/-	-/-	-0.04581
34	-/-	-/-	-0.01888	-/-	-0.00775	34	-/-	-/-	-0.79943	-/-	-0.31457
35	-/-	-0.01241	0.00046	0.00462	-0.00623	35	-/-	-0.90845	0.03646	0.37351	-0.57378
36	-0.00156	0.00955	0.00823	-/-	-0.00390	36	-0.14747	0.84272	0.68447	-/-	-0.40081

3.2 Recovery of Skill Classification Probabilities

Figure 1 shows the relationships between skill classification probabilities for one randomly selected simulated dataset. The plots show the bivariate distribution of classification probabilities of this sample with respect to classification into the mastery level $\left(a_{k}=1\right)$ on skill i and skill j, for skills $i, j=1 \ldots 4$.

Figure 1. Plots of skill classification probabilities.

In addition to the skill model as given in Equation 5, the 2PL IRT model was estimated for this simulated dataset. Figure 2 shows the relationship between skill mastery probabilities (transformed to logits, i.e., for probability p, the plot shows $\log \frac{p}{1-p}$) and the overall ability estimate from the 2PL model. There is an obvious relationship between skill classifications and the 2 PL parameter for all four skills. Most points in the plots fall into the extremes, so that the examinees classified as masters versus non masters with high probability receive either very high (masters) or very low (nonmasters) 2PL IRT ability estimates.

Figure 2. Plots of skill classification probabilities by 2PL ability estimate.

Table 4 shows the recovery of skill-pattern probabilities by mdltm using the generating model (i.e., the correctly specified Q-matrix, with parameters estimated by mdltm). This table contains the "true" values used for generating the data, the average bias of the estimated skill probabilities, the standard error, and the standardized residual and the RMSE of the estimates as defined above.

Table 4 shows that the algorithm recovers the skill pattern probabilities very accurately for the simulated data. This provides some evidence that the mdltm software is capable of recovering the generating parameters of simulated data if the model is specified correctly. The Bonferroni adjusted error level chosen was $\alpha=0.0031$ yielding a critical (two-sided) value of $z_{\alpha}=2.955$, an interval boundary that none of the residuals in Table 4 exceed. In addition, the homogeneity of bias and RMSE values indicates that the generating probabilities have been reproduced very accurately across skill patterns.

Table 4
True Parameters, Bias, S.E, Residual, and RMSE of Skill-Pattern Probabilities

Pattern	Truth	Bias	s.e.	Residual	RMSE
0000	0.26041	0.00030	0.00066	0.46619	0.00419
1000	0.05208	-0.00050	0.00049	-1.02836	0.00315
0100	0.05208	-0.00071	0.00063	-1.13016	0.00408
1100	0.01041	-0.00011	0.00035	-0.31626	0.00226
0010	0.05208	-0.00009	0.00044	-0.20875	0.00283
1010	0.01041	-0.00011	0.00031	-0.37587	0.00200
0110	0.01041	-0.00016	0.00027	-0.60750	0.00172
1110	0.05208	-0.00020	0.00055	-0.36974	0.00351
0001	0.05208	0.00025	0.00056	0.44879	0.00357
1001	0.01041	0.00016	0.00025	0.66666	0.00161
0101	0.01041	0.00036	0.00032	1.13175	0.00209
1101	0.05208	0.00065	0.00052	1.23687	0.00339
0011	0.01041	-0.00009	0.00033	-0.30192	0.00209
1011	0.05208	-0.00004	0.00064	-0.06390	0.00405
0111	0.05208	-0.00074	0.00060	-1.24049	0.00387
1111	0.26041	0.00105	0.00056	1.87895	0.00370

3.3 Skill Classification Agreement

Table 5 contains a summary of classification accuracy using Cohen's kappa (κ; Cohen, 1960) across the four skills for the first five replicates. The values are quite stable, so that the mean was computed for these five replicates only. The average kappa across the four skills is $\kappa=0.911$, which should be considered a value that indicates almost perfect agreement. Landis \& Koch (1977) consider values above 0.6 as indicating substantial agreement, whereas a value above 0.8 is considered indicating almost perfect agreement. Fleiss (1981) considers κ above 0.75 as indicating excellent agreement.

Table 5
Cohen's Kappa, Means, and Standard Deviations for Five Replicates Across the Four Skills

Skill	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Mean	St. dev.
1	0.94027	0.92152	0.92569	0.93472	0.93333	0.93111	0.00746
2	0.87569	0.87916	0.88125	0.86875	0.87916	0.87680	0.00492
3	0.87569	0.94375	0.92638	0.92777	0.93402	0.92152	0.02652
4	0.93541	0.91736	0.90972	0.90694	0.90902	0.91569	0.01170

Table 6 shows the percentage of agreement on the level of skill patterns based on the classification of each simulated response pattern into one of the $2^{4}=16$ possible skill patterns from nonmastery on all four skills to mastery of all four skills, that is, $\{(0,0,0,0),(0,0,0,1), \ldots,(1,1,1,0),(1,1,1,1)\}$.

Table 6
Skill Pattern Classification Agreement

	1	2	3	4	5
All four skills correct	0.8687	0.8690	0.8593	0.8548	0.8684
Three or more correct	0.9684	0.9638	0.9642	0.9666	0.9621

For the given skill pattern distribution, the level of chance agreement on all four skill levels is 0.16 , compared to a model based agreement on all four skills of about 0.86 , so that the model based correct classification is about five times higher $(0.86 / 0.16=5.375)$ than the classification by chance, given that the base rates (i.e., the true distribution) of the skill-patterns are already known. However, if the distribution of skills is unknown, the all-correct classification by chance drops to 0.0625 , which results in a ratio of $13.76=0.86 / 0.0625$, so that the all-correct classification hit rate 13.76 times higher than a classification by chance. If classifications with three or more correct skill identifications are considered, the (three or more) correct rate is about 96.5%.

3.4 Additional Results

The appendix (Table A1 and the following tables) contains results of additional simulations using a bifactorial Q-matrix, with four ($0 / 1$) skills, 36 items, and 2,880 simulated respondents for each of 40 datasets. In a bifactor-design, one predominant factor (here: skill) is required for all the items; all items may require additional subfactors (skills), which load only on a small subset of items compared to the predominant skill. In the simulation, Skill 1 was the predominant skill; it was required for all 36 items (so that the Q-matrix column for this skill contains only ones, i.e., $q_{i 1}=1$ for all $i=1, \ldots, 36$), whereas Skills $2-4$ are required for different item subsets, each comprising approximately one third of the items. The Q-matrix entries for Skill 1 were set to be 1.0 by design, whereas the remaining nonzero entries were randomly assigned for Skills $2-4$. Results are based on analyses with mdltm using 40 datasets simulated using the bifactor design. As was the case for the condition without a predominant skill, most standardized residuals here
are also of moderate size (see the appendix). Using a critical z_{α} based on a Bonferroni correction of α shows that a significant result is obtained based on one residual with a value of -4.05 . The RMSE based on 40 simulations are homogeneous and without any obvious outliers. Overall, the simulation parameters for the bifactor Q-matrix data are also recovered very accurately across skill pattern probabilities, slopes, and difficulties. ${ }^{2}$

4. Diagnostic Modeling of TOEFL iBT Data

This section presents an analysis of the TOEFL iBT pilot data with the pGDM as introduced above, using dichotomous ($0 / 1$) attributes. The TOEFL iBT Reading and the Listening sections of two parallel forms, Form A and Form B, were analyzed by content experts, producing four Q-matrices, one each for Reading Form A, Reading Form B, Listening Form A, and Listening Form B. The TOEFL iBT data contains items with missing responses as well as items scored using a polytomous response format. None of the polytomous or missing responses were recoded (i.e., they were neither collapsed nor assigned to a specific category for the analysis using the mdltm software). All analyses were carried out using a 2.2 GHZ notebook PC and took less than 30 seconds to converge for the larger datasets using the four-skill model. The joint analysis of Reading and Listening using a Q-matrix with eight skills took about 6 minutes.

4.1 Source and Structure of the Data

Table 7 gives details on the structure of the TOEFL iBT data that were analyzed with the pGDM. The forms are intended to be parallel; the Reading forms contain 39 and 40 items each and consist of items that are assumed to require the four skills, Word Meaning, Specific Information, Connect Information, and Synthesize \& Organize, to very similar degrees. The two Listening Test Forms A and B include 34 items each; the skills that are assumed to be required to answer these items correctly are labeled General Information, Specific Information, Pragmatics \& Text Structure, and Inferences \& Connections. Tables A4 and A5 in the appendix present the Q-matrices for the four TOEFL iBT datasets that were analyzed here.

The analyses were carried out separately for Reading and Listening and separately for both Forms A and B. Most subjects who took Form B also took Form A, so that 379 subjects that took both forms could be matched with respect to their outcomes of the GDM analysis. All four form (A/B) by scale (Reading/Listening) datasets were analyzed both with the 2PL IRT model and the

Table 7
Structure of the Language Assessment Pilot Data Used in the Analysis

Form	A	B	Skills labels			
Reading	$\begin{gathered} 39 \\ \text { items } \end{gathered}$	$\begin{gathered} 40 \\ \text { items } \end{gathered}$	Word meaning	Specific information	Connect information	Sythesize \& organize
Listening	$\begin{gathered} 34 \\ \text { items } \end{gathered}$	$\begin{gathered} 34 \\ \text { items } \end{gathered}$	General information	Specific information	Pragmatics \& text structure	Inferences \& connections
Sample N	2,720	419				

GDM using the four skills as defined by the expert supplied Q-matrices.
Form A was also analyzed jointly, that is, the 39 Reading and the 34 Listening items were analyzed together with a combined Q-matrix of eight skills, as well as with a two-dimensional version of the 2PL IRT model. This was done in order to check whether a joint analysis would provide evidence that Reading and Listening have to be modeled as separate abilities. Form B was not analyzed in this way since the comparably small sample size was deemed insufficient for such a high dimensional analysis. Summary results for the joint analysis of Reading and Listening are reported in section 4.3.

4.2 Results and Notes

Since the pGDM contains commonly used IRT models like the GPCM as special cases, this allows one to compare IRT results and diagnostic profile scoring results directly with respect to measures of model-data fit. Table 8 presents the resulting values for the expected log likelihood per observation (log-penalty) for the different models analyzed.

Table 8
Log Likelihood and Log-Penalty for Models Estimated for Reading and Listening Forms A and B

		Reading		Listening	
Form	Model	$-2 *$ LogLike	LogPen	$-2 *$ LogLike	LogPen
A	4 Skills GDM	116308.06	-21.38	95204.48	-17.50
A	2PL IRT	114096.26	-20.97	93125.46	-17.11
B	4 Skills GDM	18517.37	-22.10	14588.96	-17.41
B	2PL IRT	18218.45	-21.74	14333.70	-17.10

The 2PL model shows uniformly smaller deviance ($-2^{*} \operatorname{LogLike}$) values and consequently smaller absolute log penalties (LogPen) than the four-skill model across the Reading and Listening sections of both test forms. These values indicate that the 2 PL model fits the data better than the four-skill model. The number of parameters required is larger for the four-skill model than for the 2 PL model, unless the Q-matrix would allow only one nonzero entry for each item (i.e., it would exhibit simple structure). Therefore, information indices like AIC or BIC (Schwarz, 1978) would favor the 2 PL , since the number of parameters is smaller and the likelihood is larger for this model. In this sense, the 2 PL model may be viewed as the more parsimonious data description. Therefore, the 2PL ability parameters taken from the calibration of the TOEFL iBT data will be used as a benchmark for the classifications from the diagnostic model with four skills per subtest and test form.

The comparisons to be presented next are organized as follows: First, the skill mastery probabilities are compared to the 2PL ability estimate for Reading and Listening for Test Forms A and B. Second, the correlations of raw scores, IRT ability estimates and ability and skill mastery probabilities will be compared across Test Forms A and B for those examinees who took both Form A and Form B. Then, the joint distributions of skill mastery probabilities across Test Forms A and B will be examined for those examinees who took both Form A and Form B.

4.21 Skill Mastery and Overall Ability, Reading Forms A and B

Figure 3 shows the skill mastery probabilities plotted against the overall ability estimate for Reading, Test Forms A and B, for Skills 1-4. The four plots on the left-hand side show the results for Form A, the four plots on the right-hand side show the results for Form B. It is evident from the plots that Skills $1-3$ are predicted very accurately by the overall 2 PL ability estimate. Skill 4 shows an unexpected shape, but there is still a definite relationship to overall ability estimate.

The right-hand side of Figure 3 shows the relationship between skill mastery probabilities and overall 2PL ability estimate for Reading, Test Form B. The relationship between skills and ability are very similar to what has been found in Test Form A, except for Skill 4, which seems somewhat less related to overall ability when comparing Form B with Form A. Note that Skill 4 in Reading is special in the sense that Skill 3 is a prerequisite for Skill 4. In Reading Form A, all except one item require Skill 3 whenever Skill 4 is required, whereas several items require only Skill 3 (and maybe some other skill), but not Skill 4. In Form B, all items that require Skill 4 also require Skill 3.

Figure 3. Skill mastery and reading ability.
Note. For Form A, N=2,720, and for Form B, $\mathrm{N}=420$.

4.22 Skill Mastery and Overall Ability, Listening Forms A and B

A more homogenous relation to the 2PL ability estimate is found for the Listening subscales. Figure 4 shows the plots of skill mastery probabilities and overall 2PL ability estimate for test Form A and Form B. The top line graphs show the results for Form A, and the bottom graphs show results for Form B. All skill mastery probabilities are highly related to overall 2PL ability, where the width of the resulting shape depends mainly on how many items per skill are available. The four skill probabilities are related to the overall 2PL ability in very similar ways for both test forms.

The Pearson correlation would be misleading to report for the kind of curvilinear relationship observed in the above plots. An appropriate transformation of the skill mastery probabilities is to calculate the logit

$$
l=\log \frac{p}{1-p}
$$

for each examinee. This transforms the bounded classification probability p to a value l that is unbounded much like the 2PL ability estimate θ, which makes a linear relationship between l and θ a reasonable assumption. The correlations found for these transformed skill classification probabilities with the overall 2PL ability estimate range between 0.8 to 0.95 , for Reading Skills $1-3$, Form A. Correlations are somewhat lower for Skill 4 (see Table 9). This indicates that most of the

Figure 4. Skill mastery probabilities and overall ability, Listening Forms A and B.
variance can be picked up by the overall 2 PL ability estimate (denoted by ThetaRA or ThetaLA in the table), for all four skills in the case of the Listening subscale and for three out of four for the Reading skills.

Table 9
Correlations Between Logit Skill Probabilities and the Overall 2Pl Ability Estimate, Reading Form A

	Skill1RA	Skill2RA	Skill3RA	Skill4RA
ThetaRA	0.8541	0.8929	0.9500	0.4549
Skill1RA		0.7980	0.8102	0.4285
Skill2RA			0.8652	0.4770
Skill3RA				0.4209

Table 10 shows the correlations between the logit skill probabilities (denoted by Skill1LA to Skill4LA) and the overall ability estimate (ThetaLA) of the Listening skills for Form A; the correlations for Form B are similar (compare Figure 4) and are not presented due to space constraints. The correlations are all between 0.85 and 0.96 , so that it may be conjectured that all the variables tabulated in the figure below are interchangeable measures of the same underlying variable.

Table 10
Correlations Between Logit Skill Probabilities and the Overall 2Pl Ability Estimate, Listening Form A

	Skill1LA	Skill2LA	Skill3LA	Skill4LA
ThetaLA	0.9498	0.9659	0.9252	0.8977
Skill1LA		0.9313	0.9230	0.9112
Skill2LA			0.8848	0.8836
Skill3LA				0.8556

4.23 Relationships Between Forms A and B

The correlation between relative raw score (score/max score) and the overall 2 PL ability estimate for Reading across Forms A and B, obviously only based on examinees who took both forms, is around 0.8. The same holds for the Listening subscale. Figure 5 shows the scatterplots illustrating this relationship.

It can be seen that the relative raw score has only a limited number of possible values and the data points are located on a grid of possible coordinates, since the relative raw score, being a simple transform of the raw score, is a discrete random variable. The 2PL/GPCM based ability estimates are slightly more spread out and do not show the grid effect observed for the proportion correct, since the sufficient statistic for the ability estimates is a weighted sum of item scores.

Figure 5. Relationship between overall estimates for Forms A and B for Reading and Listening skills.

Table 11 shows the intercorrelations for logit skill probabilities and 2PL ability estimates for Reading across Form A and Form B. The 2PL ability estimate of Forms A and B correlate to 0.81 , which is very close to the logit skill probability correlations for the Reading Skills 1-3. Again, Skill 4 on Form A shows somewhat lower correlations with the other skills and the 2PL ability. Remember that Skill 4 on Form B does not have any items where Skill 3 is not required. This skill shows even negative correlations with the other variables in the table.

Table 11
Correlation Between Reading Logit Skill Probabilities and 2PL Ability for Forms A and B

	ThetaRA	Skill1RA	Skill2RA	Skill3RA	Skill4RA
ThetaRB	0.81644	0.71986	0.72834	0.78031	0.34320
Skill1RB	0.77173	0.73583	0.71120	0.74149	0.35930
Skill2RB	0.78690	0.72275	0.73241	0.77894	0.37202
Skill3RB	0.81318	0.73856	0.74024	0.78791	0.35408
Skill4RB	-0.09303	-0.10294	-0.16095	-0.14863	0.04358

The correlations between the Listening skills and the Listening 2PL ability estimates are presented in Table 12. The range of correlations is more homogenous than for Reading, a result to be expected based on the plots shown previously.

Table 12
Correlation Between Listening Logit Skill Probabilities and 2PL Ability for Forms A and B

	ThetaLA	Skill1LA	Skill2LA	Skill3LA	Skill4LA
ThetaLB	0.79550	0.76447	0.76993	0.75026	0.71276
Skill1LB	0.76390	0.75653	0.74784	0.72795	0.70831
Skill2LB	0.77349	0.75986	0.76290	0.73089	0.70027
Skill3LB	0.76147	0.73816	0.74804	0.72905	0.69545
Skill4LB	0.74249	0.72383	0.71791	0.71729	0.67395

The correlation across forms are also somewhat more homogenous for Listening. The correlations range between 0.67 (Listening, Skill 4, Form A and Listening, Skill 4, Form B) and 0.79 (Listening, Skill 1, Form A and Listening, Skill 1, Form B).

4.24 Skill Mastery Probabilities Across Test Forms

Figure 6 shows the skill mastery probabilities for Reading across Test Forms A and B for those 379 individuals who took both test forms. Recall that Skill 4 had a "funny" S-shape in both test forms whereas Skills $1-3$ were monotonically related to the overall Reading 2 PL ability estimate.

Figure 6. Skill probabilities for Reading Across Form A and Form B.

There is an obvious pattern in the plots for Skills $1-3$. The majority of points cluster around the skill coordinates $(0,0)$ and $(1,1)$. This can be seen as a sign of consistency in classifications of the mastery of skills. Recall that the logits of the values depicted in the plots correlate about 0.8 for Reading Skills $1-3$. On the other hand, there are also a few examinees who have a mastery probability of greater than 0.5 for Form A and a probability below 0.5 for Form B, and vice-versa. These are the observations that would be classified as masters based on their mastery probability one test form and as nonmasters according to their mastery probability on the other test form. ${ }^{3}$

Skill 4 stands out from the others, lacking the observed pattern of noticeable agreement between the skill mastery probabilities. This skill probability variable was also functioning differently with respect to the overall ability estimate. The consistency across forms is much lower for Skill 4, and there is no noticeable clustering around the $(0,0)$ and $(1,1)$ coordinates, indicating a lack of agreement on Skill 4 between the two test forms.

Figure 7 shows the same comparison plots for the Listening skills across Form A and Form
B. Recall that all the Listening skills had shown a strict monotone relationship with the overall Listening 2PL ability estimate in both test forms.

Figure 7. Skill probabilities for Listening across Test Forms A and B.

As was the case for Reading Skills 1-3, the plots for the Listening Skills $1-4$ show clustering around the coordinates $(0,0)$ and $(1,1)$. This indicates that most individuals would be classified as either master or nonmaster in the same way by both test forms. Note however, that for Listening, the plots show a slight asymmetry; there seems to be a few more individuals who receive a higher than 0.5 mastery classification probability for test Form B with a probability of mastery close to 0.0 for Form A than the other way around. In the plots, it may seem as if the lower right corner of each plot to contain a little fewer observations than the upper left corner. This may be an artifact of the relatively small sample employed; it cannot be decided from these plots alone.

4.3 Combined Analysis of Reading and Listening

Since the logit transformed skill probabilities for Reading and Listening correlate very highly with the corresponding 2PL ability estimate, some additional analyses were carried out in order to check whether the 2PL model would suffice to describe the combined data for Reading and Listening adequately. Table 8 shows the log-likelihoods for the different models estimated for the combined Reading and Listening data. In order to investigate whether these conclusions
hold up even if the Reading and Listening are analyzed jointly, additional analyses with an eight-dimensional skill model, a two-dimensional confirmatory 2PL model, and a unidimensional 2PL model across the combined Reading and Listening items were carried out.

Table 13 shows the deviance and log penalty values for the joint analyses of Reading and Listening subscales for Form A. Test Form B was not analyzed jointly for Reading and Listening, since the small sample for this form was deemed too small to support a joint model for 74 items.

Table 13
Joint Analysis Results for Reading and Listening Form A

Model	-2^{*} LogLik	LogPen
8 Skills GDM	195437.39	-35.93
2-D 2PL IRT	191013.36	-35.11
1-D 2PL IRT	191650.13	-35.23

The deviance, and consequently the absolute log penalty, is smallest for the two-dimensional 2PL (2-D 2PL) model in the joint analysis of Reading and Listening. The eight-skill model has the largest deviance and absolute log penalties, indicating a slightly poorer fit than the model data fit of the 2PL model and 2-D 2PL. Given that the eight-skill model shows the largest deviance of the models estimated here, and given that the eight-skill model requires more parameters than each of the 2PL models, it may be concluded that the 2PL models are preferable in terms of model-data fit and parsimony. Using the combined 2PL model may be advised in order to increase the accuracy of parameter estimates and in order to facilitate the study of correlations between Reading and Listening for different test forms on the latent variable level.

5. Conclusions

The goal of the work presented here is to present the applicability of the GDM and its estimation when making use of standard maximum likelihood techniques. The results of the simulation study show that the pGDM is capable of recovering parameters data very accurately here, even if no information about the true parameter values is used in estimation. The simulation used data similar to the data structures from the TOEFL iBT pilot study. Results show that the estimated skill pattern probabilities as well as estimates of slope and difficulty parameters are very close to the generating parameters. This statement holds for both, the bifactor data, where one
predominant skill was present in all items, as well as for the more balanced condition, where each skill was present in about 50% of the items. Additional studies are necessary in order to be able to generalize these findings to smaller and larger sample sizes, as well as additional variables that have an impact on the latent structures that represent the skill space, such as the number of skills and the granular levels of the skills.

For the combined Reading and Listening real data from the TOEFL iBT pilot, an IRT model with a two-dimensional 2PL ability, one ability each for Reading and for Listening, fit the data slightly better than a undimensional 2PL model with one common ability holding across Reading and Listening. When looking at the Reading and Listening data separately, the four-skill models for Reading and for Listening with the TOEFL iBT pilot data fit less well than the 2PL models for these subscales. For both test forms, the four Listening skills are highly correlated, as are Reading Skills $1-3$. The Reading subscale includes one skill (Skill 4) that differs from the general pattern in that it correlates lower than the other skills among each other and it shows the lowest correlations across Forms A and B.

The pGDM was estimated for $4+1$ (four separate and one combined analysis) different real datasets from the TOEFL iBT pilot study. The analyses successfully showed similarities between the skills across test forms, even though the Q-matrices were retrofitted to an existing test. Results from comparing the skill model with the 2 PL may provide insight for test development in the sense that some skills may need clearer separation by making use of specifically engineered items, if a skill model is to be used. In the current form, the 2PL fits the observed data a little better than a model with four mastery/nonmastery skills. This is an area where additional research on revisions that might be made to the Q-matrix, as well as on future modifications to the test, may prove useful. The Reading Skill 4 assessed in Form B shows very low correlations with all other variables in the study, even with Reading Skill 4 in Form A. Some additional analysis of the Reading test items may allow one to improve on the Q-matrix in the sense that more separable skills may be defined in a revised version. The output from the mdltm software used for estimating the 4-Skill and the 2PL models contains item fit information that may provide additional information for revisions of the test and maybe changes to the Q-matrices. This additional information can come from the diagnostics available through estimating the pGDM and from presenting the outcomes in plots like the ones shown in Figure 7.

The 2PL IRT model used in the analysis is not analyzed any further in this report, more
specifically, the 2 PL model was not tested against the $3 \mathrm{PL}^{4}$, since the focus of this report is on diagnostic models. The analyses showed that a comparably better model-data fit can be achieved using the 2PL model, and that the four-skill model, if it is applied, results in highly correlated skills for the TOEFL iBT data.

If skill classifications and skill profile reports to clients are required for TOEFL iBT Reading and Listening, these reports should be accompanied by a note pointing out the high correlations among the skills and the effects these high correlations will have on the reports. The majority, or seven out of eight Reading and Listening skills, are strongly related to overall ability, and the eighth skill is found not to correlate across test forms in the pilot data. For the current form of the TOEFL iBT instrument and the current Q-matrices, the skill profile reports would include four highly correlated skill classifications for the Listening section, and three highly correlated skill classifications for the Reading section. If highly correlated skills were to be reported, most skill patterns would be $(0,0,0,0)$ - that is, a lack of mastery on all skills-or $(1,1,1,1)$-that is, mastery on all skills. This is caused by reducing the available information (the skill mastery probability is dichotomized using some cut point) to a $0 / 1$ mastery/nonmastery variable. On the other hand, if a single IRT-based ability estimate were to be made available for every examinee, the ability estimate could be accompanied by a measure of uncertainty or by a descriptive proficiency level that states in qualitative terms what a student at or above this level is able to do.

References

Almond, R. G., \& Mislevy, R.J. (1999). Graphical models and computerized adaptive testing. Applied Psychological Measurement, 23, 223-237.

Birnbaum, A. (1968). Some latent trait models. In F. M. Lord \& M. R. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.

Davier, M. von, (2001). WINMIRA 2001: A software for estimating Rasch models, mixed and HYBRID Rasch models, and the latent class analysis [Computer software]. Retrieved August 5, 2005, from the Assessment System Corporation: http://www.assess.com/Software/WINMIRA.htm.

Davier, M., von, \& Yamamoto, K. (2004a, October). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman Conference, Philadelphia, PA.
Davier,M., von, \& Yamamoto, K. (2004b, December). A class of models for cognitive diagnosis and some notes on estimation. Paper presented at the ETS Tucker Workshop Seminar, Princeton, NJ.

Davier, M., von, \& Yamamoto, K. (2004c). Partially observed mixtures of IRT models: An extension of the generalized partial credit model. Applied Psychological Measurement, 28, 389-406.
de la Torre, J., \& Douglas, J. A. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.

DiBello, L., Stout, W., \& Roussos, L. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P. Nichols, S. Chipman, \& R. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361-389). Hillsdale , NJ: Erlbaum.

Fleiss, J. (1981). Statistical methods for rates and proportions. New York: John Wiley \& Sons.
Formann, A. K. (1985). "Constrained Latent Class Models: Theory and Applications," British Journal of Mathematical and Statistical Psychology, 38, 87-111.

Haberman S. J. (1979). Qualitative data analysis: Vol. 2. New developments. New York: Academic Press.

Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement. 26(4), 301-321.

Hagenaars, J. A. (1993). Loglinear models with latent variables. Newbury Park, CA: Sage.
Hartz, S., Roussos, L., \& Stout, W. (2002). Skills diagnosis: Theory and Practice. User Manual for Arpeggio software [Computer software manual]. Princeton, NJ: ETS.
Landis, J., \& Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.

Lazarsfeld, P. F., \& Henry N. W. (1968). Latent structure analysis. Boston: Houghton Mifflin.
Linacre, J. M. (1989). Many-facet Rasch measurement. Chicago: MESA Press.
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187-212.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16(2), 159-176.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press.
Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345-54.

Notes

${ }^{1}$ Assuming fixed skill levels a_{l} on the remaining skills $l \neq k$ and a slope parameter $\gamma_{i k}>0$.
2 Additional simulations were carried out using the bifactor design as well as a random Q-matrix with a uniform skill pattern distribution. The results of these analyses are not reported here, since the recovery was equally good under the uniform skill probabilities conditions as it was under the conditions presented here.
${ }^{3}$ Unless a region of indifference is used, which acknowledges that there is insufficient information for some examinees falling into this region to classify these with high confidence.
${ }^{4}$ The item fit measures available in mdltm were examined informally in search for indications of model misfit, but no obvious evidence of item misfit or evidence to indicate a need to modeling guessing behavior was found.

Appendix

Parameter Recovery in the Bifactorial Design

Table A1
Skill Pattern Probabilities Recovery, Bifactorial Q-Matrix

Pattern	Truth	Bias	s.e.	Residual	RMSE
0000	0.26041	0.00155	0.00116	1.33330	0.00753
1000	0.05208	-0.00042	0.00051	-0.82776	0.00327
0100	0.05208	-0.00056	0.00052	-1.07887	0.00333
1100	0.01041	-0.00007	0.00037	-0.19135	0.00235
0010	0.05208	0.00129	0.00092	1.39044	0.00601
1010	0.01041	-0.00009	0.00043	-0.22715	0.00276
0110	0.01041	-0.00002	0.00036	-0.07836	0.00229
1110	0.05208	-0.00152	0.00087	-1.74485	0.00571
0001	0.05208	-0.00188	0.00096	-1.94640	0.00639
1001	0.01041	0.00050	0.00039	1.28892	0.00252
0101	0.01041	-0.00012	0.00044	-0.28609	0.00282
1101	0.05208	0.00071	0.00065	1.08053	0.00423
0011	0.01041	0.00001	0.00037	0.01711	0.00234
1011	0.05208	0.00055	0.00074	0.75304	0.00472
0111	0.05208	-0.00029	0.00038	-0.76943	0.00246
1111	0.26041	0.00038	0.00091	0.42199	0.00577

Table A2
True Parameters and RMSE for the Bifactorial Simulated Data

		True parameters									

Table A3
Mean Bias and Standardized Residuals for the Bifactor Data

Mean bias						Standardized residuals					
Item	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}	item	$\gamma_{1 i}$	$\gamma_{2 i}$	$\gamma_{3 i}$	$\gamma_{4 i}$	β_{i}
1	-0.00776	-/-	-0.00688	0.01139	-0.00515	1	-0.60711	-/-	-0.45620	0.73647	-0.40428
2	0.00597	-/-	-0.00462	-/-	0.01225	2	0.72181	-/-	-0.50605	-/-	1.62753
3	0.00285	-/-	-/-	-/-	-0.01500	3	0.41844	-/-	-/-	-/-	-2.47030
4	0.00514	-/-	0.00237	-/-	-0.01538	4	0.64836	-/-	0.23873	-/-	-1.76881
5	-0.00646	-/-	-/-	-/-	-0.00715	5	-0.88257	-/-	-/-	-/-	-0.96029
6	-0.00102	0.01349	-0.00752	-/-	0.00274	6	-0.11028	1.05105	-0.61421	-/-	0.17177
7	-0.00912	0.00360	-/-	-/-	0.01154	7	-0.93149	0.41632	-/-	-/-	1.38670
8	0.01389	0.00305	-/-	-/-	0.01021	8	0.95470	0.23006	-/-	-/-	0.72206
9	-0.00438	-/-	0.00308	0.00475	-0.00091	9	-0.34677	-/-	0.22904	0.36413	-0.09232
10	0.01054	-/-	-/-	-/-	0.01285	10	1.50587	-/-	-/-	-/-	1.71672
11	-0.00140	0.02099	-/-	-/-	-0.00429	11	-0.12879	1.57519	-/-	-/-	-0.44118
12	-0.00298	-0.01097	-/-	-0.00180	0.01269	12	-0.25251	-0.76803	-/-	-0.12517	1.08939
13	-0.00011	-/-	-/-	-/-	0.00476	13	-0.01297	-/-	-/-	-/-	0.54748
14	-0.01529	-/-	-/-	0.00051	0.01103	14	-1.58829	-/-	-/-	0.05791	1.38679
15	0.00232	-/-	-/-	-/-	0.01221	15	0.21531	-/-	-/-	-/-	1.33896
16	0.03241	-0.01192	0.00692	-/-	0.00823	16	2.55051	-0.75449	0.42583	-/-	0.79311
17	0.01125	0.00479	-0.01074	-/-	0.00029	17	1.43867	0.47609	-0.96440	-/-	0.02757
18	-0.00427	-0.00984	-/-	-/-	0.01437	18	-0.66287	-1.36091	-/-	-/-	1.96074
19	0.01408	-/-	-0.01316	-/-	0.00704	19	1.72980	-/-	-1.32653	-/-	0.87301
20	-0.00152	0.00892	-/-	-/-	-0.00163	20	-0.16691	0.98743	-/-	-/-	-0.23873
21	-0.01391	0.01637	-/-	-/-	-0.00105	21	-1.44395	1.63338	-/-	-/-	-0.12287
22	0.00899	-/-	-0.00014	-/-	0.00929	22	0.93151	-/-	-0.01459	-/-	1.17263
23	-0.01364	0.02515	-0.00548	-/-	-0.00307	23	-1.07857	2.37516	-0.46661	-/-	-0.25469
24	0.03524	-/-	0.02412	-/-	0.02620	24	2.22840	-/-	1.76874	-/-	1.78313
25	-0.00409	-/-	-/-	-/-	0.01159	25	-0.64767	-/-	-/-	-/-	1.64883
26	-0.01229	0.01175	-/-	-/-	0.00817	26	-1.25809	1.06499	-/-	-/-	0.93288
27	-0.00778	-/-	-/-	0.00720	0.00300	27	-0.84982	-/-	-/-	0.68314	0.39936
28	-0.02855	-0.00240	-/-	0.02343	0.00955	28	-2.99681	-0.22817	-/-	2.10567	1.02748
29	-0.01497	0.01545	-/-	-/-	-0.00351	29	-1.67514	1.43164	-/-	-/-	-0.43009
30	-0.01994	-/-	-/-	0.00317	0.00116	30	-1.79750	-/-	-/-	0.29830	0.12053
31	0.00180	-/-	-/-	-/-	0.00825	31	0.25577	-/-	-/-	-/-	1.20461
32	-0.01353	-/-	0.00606	-0.00201	-0.00832	32	-1.02307	-/-	0.42390	-0.16564	-0.60600
33	-0.02533	-/-	-/-	-0.02981	0.00828	33	-2.36692	-/-	-/-	-2.65322	0.60248
34	0.03201	-/-	-/-	-/-	-0.03840	34	1.40661	-/-	-/-	-/-	-1.48826
35	0.00739	0.00260	-/-	-/-	-0.00601	35	0.72247	0.22603	-/-	-/-	-0.46644
36	0.00610	-/-	0.00212	-/-	0.00213	36	0.72017	-/-	0.17933	-/-	0.24700

Q-Matrices Used for the TOEFL iBT Data

Table A4
TOEFL iBT Field Test Q-Matrix, Listening Forms

Form A	General information	Specific information	Pragmatics \& text struct	Inferences \& connections	Form	General information	Specific information	Pragmatics \& text struct	Inferences \& connections
1	1	0	0	0	1	1	0	0	0
2	0	1	0	0	2	0	0	1	1
3	0	1	0	0	3	0	1	0	0
4	0	1	0	0	4	0	0	1	0
5	0	0	1	0	5	0	0	0	1
6	1	0	0	0	6	1	0	0	0
7	0	1	0	0	7	0	1	0	1
8	0	1	0	0	8	0	1	0	0
9	0	0	1	0	9	0	1	0	0
10	0	0	1	1	10	0	0	1	0
11	1	0	0	1	11	1	0	0	0
12	0	0	1	1	12	0	0	1	0
13	0	0	0	1	13	0	1	0	0
14	0	1	0	0	14	0	0	0	1
15	0	0	1	1	15	0	1	0	0
16	0	0	1	0	16	0	0	1	0
17	1	0	0	1	17	1	0	0	0
18	0	1	0	0	18	0	0	1	0
19	0	1	0	0	19	0	1	0	0
20	0	1	0	1	20	0	1	0	0
21	0	1	0	0	21	0	0	1	0
22	0	0	1	0	22	0	0	1	0
23	0	1	0	0	23	1	0	0	0
24	0	0	1	1	24	0	1	0	1
25	0	1	0	0	25	0	0	1	0
26	0	1	0	0	26	0	1	0	0
27	0	1	0	0	27	0	0	1	0
28	0	0	1	0	28	0	0	1	0
29	1	0	0	1	29	1	0	0	0
30	0	0	0	1	30	0	0	1	0
31	0	1	0	0	31	0	1	0	0
32	0	1	0	1	32	0	0	0	1
33	0	0	1	1	33	0	0	1	0
34	0	0	1	0	34	0	0	1	0

Table A5
TOEFL iBT Field Test Q-Matrix, Reading Forms

$\begin{gathered} \text { Form } \\ \mathrm{A} \end{gathered}$	Word meaning	Specific information	Connect information	Synthesize \& organize	Form B	Word meaning	Specific information	Connect information	Synthesize \& organize
1	1	0	0	0	1	1	0	0	0
2	0	0	1	0	2	0	1	0	0
3	1	0	0	0	3	0	0	1	1
4	0	1	0	0	4	0	0	1	1
5	0	0	1	1	5	1	0	0	0
6	1	0	0	0	6	0	1	0	0
7	0	1	0	0	7	1	0	0	0
8	1	0	1	1	8	0	0	1	0
9	0	0	1	0	9	0	1	0	0
10	0	0	1	1	10	0	1	0	0
11	0	0	1	0	11	0	0	1	0
12	0	0	1	1	12	0	0	1	1
13	0	1	0	0	13	0	1	0	0
14	0	1	0	0	14	1	0	0	0
15	0	1	1	0	15	0	1	0	0
16	1	0	0	0	16	0	0	1	1
17	0	0	1	0	17	0	0	1	0
18	1	0	0	0	18	1	0	0	0
19	0	0	1	0	19	0	0	1	0
20	1	0	0	0	20	1	0	0	0
21	0	0	1	0	21	0	0	1	0
22	0	0	1	0	22	0	0	1	0
23	0	1	0	1	23	1	0	1	0
24	0	0	1	1	24	0	1	0	0
25	0	0	1	0	25	0	0	1	0
26	0	0	1	1	26	0	0	1	1
27	0	1	0	0	27	0	1	0	0
28	1	1	0	0	28	1	0	0	0
29	1	0	0	0	29	0	0	1	0
30	0	1	0	0	30	0	0	1	0
31	0	0	1	0	31	0	1	0	0
32	1	0	0	0	32	0	1	0	0
33	0	1	0	0	33	1	1	0	0
34	0	0	1	1	34	0	1	0	0
35	0	1	0	0	35	0	0	1	1
36	0	1	1	0	36	1	0	0	0
37	1	0	0	0	37	1	0	0	0
38	0	0	1	0	38	0	0	1	1
39	0	0	1	1	39	0	0	1	0
.	.	\cdot	.	-	40	0	0	1	1

